What are the expected outputs of dual regression preprocessing?

I am trying to find which output to use in a group analysis of the dual regression Smith et al 10 large scale networks.

pipeline config:

seed_based_correlation_analysis:
  run: true
  sca_roi_paths:
    /cpac_templates/PNAS_Smith09_rsn10.nii.gz: DualReg

No errors were logged, but I do not seem spatial map images in the outputs:

./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_desc-mean-1_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_desc-mean-2_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_desc-preproc-1_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_desc-preproc-2_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_from-bold_to-template_mode-image_desc-1_xfm.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_from-bold_to-template_mode-image_desc-2_xfm.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_from-template_to-bold_mode-image_desc-1_xfm.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_from-template_to-bold_mode-image_desc-2_xfm.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-bold_desc-brain-1_mask.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-bold_desc-brain-2_mask.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-T1w_desc-mean-1_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-T1w_desc-mean-2_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-template_desc-bold-1_mask.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-template_desc-bold-2_mask.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-template_desc-mean-1_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-template_desc-mean-2_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-template_desc-preproc-1_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-template_desc-preproc-2_bold.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-template_res-derivative_desc-bold-1_mask.nii.gz
./105105-100_3_ses-1/func/sub-105105-100_3_ses-1_task-func-1_space-template_res-derivative_desc-bold-2_mask.nii.gz

Am I misunderstanding something?

Hi Joshua,

There’s actually a recently-discovered bug in pipeline-config parsing that is reverting any changes to seed_based_correlation_analysis to the default (which includes run: Off), so to answer your questions:

What are the expected outputs of dual regression preprocessing?

Files with desc-DualReg in the name ending with _correlations and _statmap

Am I misunderstanding something?

Nope, just hitting a bug! It will be fixed in the shortly forthcoming C-PAC v1.8.5.

If you can’t wait a few weeks for the fix and are comfortable using a less-than-fully-tested development image, docker://ghcr.io/fcp-indi/c-pac:fix_minimal-schema includes the proposed fix for this bug.

I’ll post back here when 1.8.5 is released with the fix included.

Apologies for leaving this thread hanging for months past the release of C-PAC 1.8.5 ― there’s an unresolved error in testing the pip-installable cpac package, so the 1.8.5-compatible version (v0.6.0) hasn’t been released, though you can install the development version of the wrapper (if you use the wrapper) directly from GitHub like

pip install git+https://github.com/FCP-INDI/cpac.git@main

If you use C-PAC through Docker or Apptainer / Singularity directly, 1.8.5 should already work for you as expected, and this issue should be resolved.