import os from nilearn import image as nimg #from nilearn import plotting as nplot #import matplotlib.pyplot as plt from nilearn import datasets import numpy as np import nibabel as nib import pandas as pd from os.path import join from bids import BIDSLayout from nilearn.maskers import NiftiMasker from nilearn.maskers import NiftiLabelsMasker from nilearn.connectome import ConnectivityMeasure from nilearn.interfaces.fmriprep import load_confounds #Use PyBIDS to parse BIDS data structure sub = 'MTL0002' ses = 'FU84' # Define the local path to the atlas atlas_path = "/project/rrg-villens/javan/nilearn_prep_all_part2/nilearn_data/schaefer_2018" # Specify the paths to the atlas components schaefer_img = f"{atlas_path}/Schaefer2018_200Parcels_7Networks_order_FSLMNI152_2mm.nii.gz" schaefer_labels = f"{atlas_path}/Schaefer2018_200Parcels_7Networks_order.txt" # Read labels from the text file with open(schaefer_labels, "r") as f: labels = [line.strip() for line in f.readlines()] # Creating and applying the masker masker = NiftiLabelsMasker(labels_img=schaefer_img, labels=labels, standardize="zscore_sample", t_r=1) connectome_measure = ConnectivityMeasure( kind="correlation", standardize="zscore_sample", ) timeseries_schaefer200 = masker.fit_transform(f"/project/rrg-villens/dataset/PreventAD/mri/derivatives/fmriprep-20.2.7/fmriprep_w2n3/derivatives_APBv24_1_0/tedana_fmriprep_denoised/sub-{sub}_ses-{ses}_task-rest_run-01_space-MNI152NLin2009cAsym_res-2_trimmed_desc-aggrDenoised_bold.nii.gz") correlation_matrices = connectome_measure.fit_transform([timeseries_schaefer200]) #save the timeseries csv files in a folder required address = f"connectivity_schaefer200_{sub}_{ses}.csv" add = f"/project/rrg-villens/javan/schaefer200_connectivity_wave2_3/{address}" np.savetxt(add, correlation_matrices[0], delimiter=",") #np.savetxt(add, timeseries_schaefer400, delimiter=",") #np.savetxt(add2, timeseries_schaefer400, delimiter=",") #################################################################################################################################################