I recently moved my data to BIDS format, and used the fMRIPrep docker for preprocessing. This is really cool! Thanks to the folks who made it possible.
My study is designed as a single session with four runs. Stimuli are randomized across the runs. Having read that GLM is not suitable for multiple runs, and having thought I would use FEAT for the analysis, Iβm now at a loss.
My eventual goals are percent signal change in ROIs, and contrast images for conditions (i.e. subsets of my video stimuli fall within categories).
Suggestions appreciated!
If it helps, the data are arranged thus:
βββ sub-15
β βββ anat
β β βββ sub-15_T1w.json
β β βββ sub-15_T1w.nii.gz
β βββ dwi
β β βββ sub-15_dwi.bval
β β βββ sub-15_dwi.bvec
β β βββ sub-15_dwi.json
β β βββ sub-15_dwi.nii.gz
β βββ fmap
β β βββ sub-15_magnitude1.json
β β βββ sub-15_magnitude1.nii.gz
β β βββ sub-15_phasediff.json
β β βββ sub-15_phasediff.nii.gz
β βββ func
β βββ sub-15_task-ao_run-01_bold.json
β βββ sub-15_task-ao_run-01_bold.nii.gz
β βββ sub-15_task-ao_run-01_events.tsv
β βββ sub-15_task-ao_run-02_bold.json
β βββ sub-15_task-ao_run-02_bold.nii.gz
β βββ sub-15_task-ao_run-02_events.tsv
β βββ sub-15_task-ao_run-03_bold.json
β βββ sub-15_task-ao_run-03_bold.nii.gz
β βββ sub-15_task-ao_run-03_events.tsv
β βββ sub-15_task-ao_run-04_bold.json
β βββ sub-15_task-ao_run-04_bold.nii.gz
β βββ sub-15_task-ao_run-04_events.tsv
βββ task-ao_bold.json
βββ task-ao_run-01_events.tsv
βββ task-ao_run-02_events.tsv
βββ task-ao_run-03_events.tsv
βββ task-ao_run-04_events.tsv