Converting matplotlib to HCP workbench

I am trying to create a plot using HCP workbench instead of using matplotlib. here is the base code snippet. would it be possible to swap the plotting section of the code to one that uses HCP workbench and nipype’s WBCommand() instead?

from nilearn import plotting, datasets, image

from nilearn.maskers import NiftiLabelsMasker

import matplotlib.pyplot as plt

# Load example atlas with labels

atlas = datasets.fetch_atlas_schaefer_2018(n_rois=100, yeo_networks=7)

atlas_filename = atlas['maps']

labels = atlas['labels']

# Load the Z map

z_map_filename = '/path/to/file/zmap_example_image.nii'

z_map_img = image.load_img(z_map_filename)

# Initialize the NiftiLabelsMasker with the atlas

labels_masker = NiftiLabelsMasker(labels_img=atlas_filename, standardize=True, memory='nilearn_cache')

# Extract the time series data (or in this case, the Z values) for each region

z_scores = labels_masker.fit_transform(z_map_img)

# Inverse transform to get the Z map back in image space

inverse_z_map_img = labels_masker.inverse_transform(z_scores)

# Plotting the inverse Z map with ROI labels

fig, ax = plt.subplots(1, 1, figsize=(10, 8))

plotting.plot_roi(atlas_filename, bg_img=z_map_img, display_mode='ortho', draw_cross=True, title='ROIs with Z map overlay', axes=ax)

plt.show()