I am working on MRI image registration. I have two stack MRI sequences with different pixels per mm and different voxel sizes. I understand to register these images I have to resample these images such that they both have the same number of pixels per mm and the same voxel size. But after the resampling, I am getting a stack of blank images.I used SimpleITK for resampling. Note: I am just starting image processing and have very little experience in Simpleitk.
import SimpleITK as sitk
# Load the image
image = sitk.ReadImage('/path/to/my/mri/image.nii')
# Current spacing
original_spacing = image.GetSpacing()
print("Original spacing:", original_spacing)
# Desired new spacing - for example, [1.0, 1.0, 1.0]
new_spacing = [1.0, 1.0, 1.0]
# Calculate the new shape
original_size = image.GetSize()
new_size = [int(round(osz*osp/nsp)) for osz, osp, nsp in zip(original_size,
original_spacing, new_spacing)]
# Set up the resample filter with the new spacing and size
resample_filter = sitk.ResampleImageFilter()
resample_filter.SetOutputSpacing(new_spacing)
resample_filter.SetSize(new_size)
resample_filter.SetTransform(sitk.Transform())
resample_filter.SetInterpolator(sitk.sitkLinear)
# Apply the resampling
resampled_image = resample_filter.Execute(image)
# Save the resampled image
sitk.WriteImage(resampled_image, '/path/to/my/resampled_image.nii')
Hi @Hamza_Abbasi , welcome to Neurostars! I hope you will enjoy this community!
For your questions, I don’t think that you have to bother explicitly about the resampling before the registration. Most of neuroimaging software providing registration tools take care of this resampling internally.
For instance a simple registration call with FSL would be:
import nibabel as nib
import SimpleITK as sitk
# Load the NIfTI images
image1_path = 'path/to/image1.nii.gz'
image2_path = 'path/to/image2.nii.gz'
image1 = nib.load(image1_path)
image2 = nib.load(image2_path)
# Convert NIfTI images to SimpleITK images
sitk_image1 = sitk.GetImageFromArray(image1.get_fdata())
sitk_image2 = sitk.GetImageFromArray(image2.get_fdata())
# Set up the registration method
registration_method = sitk.ImageRegistrationMethod()
# Set the similarity metric (mean squares in this case)
registration_method.SetMetricAsMeanSquares()
# Set the optimizer (gradient descent in this case)
registration_method.SetOptimizerAsRegularStepGradientDescent(learningRate=0.1, minStep=1e-4, numberOfIterations=100)
# Set the interpolator (linear in this case)
registration_method.SetInterpolator(sitk.sitkLinear)
# Set the transform type (affine in this case)
transform_type = sitk.TranslationTransform(3)
registration_method.SetInitialTransform(transform_type)
# Execute the registration
transform = registration_method.Execute(sitk_image1, sitk_image2)
# Apply the transform to image2
registered_image2 = sitk.Resample(sitk_image2, sitk_image1, transform, sitk.sitkLinear, 0.0, sitk.sitkFloat32)
# Convert the registered image back to NIfTI format
registered_nifti = nib.Nifti1Image(sitk.GetArrayFromImage(registered_image2), image1.affine)
# Save the registered NIfTI image
nib.save(registered_nifti, 'path/to/registered_image2.nii.gz')