Accessing built-in pyAFQ white matter tracts (optic tract/nerve)

Summary of what happened:

I am running mrtrix_multishell_msmt_pyafq_tractometry in qsirecon and want to access all of the “built-in” white matter tracts listed on the pyAFQ documentation: Major Fiber Tracts — AFQ 2.1 documentation

Does anyone know if the optic nerve/tract bundles are available using built-in functions like reco_bd() or default18_bd()? When I pass either of these functions in the bundle_info section of my yaml file (see below) I do not appear to get those segmentations. I do get the optic radiations when running reco_bd(80)

Thanks!

Command used (and if a helper script was used, a link to the helper script or the command generated):

PASTE COMMAND HERE

Updated recon spec:

description: Use pyAFQ to perform the Tractometry pipeline, with tractography from
    qsirecon
name: mrtrix_multishell_msmt_pyafq_tractometry
nodes:
-   action: csd
    input: qsirecon
    name: msmt_csd
    parameters:
        fod:
            algorithm: msmt_csd
            max_sh:
            - 8
            - 8
            - 8
        mtnormalize: true
        response:
            algorithm: dhollander
    qsirecon_suffix: MRtrix3
    software: MRTrix3
-   action: tractography
    input: msmt_csd
    name: track_ifod2
    parameters:
        sift2: {}
        tckgen:
            algorithm: iFOD2
            max_length: 250
            min_length: 10
            power: 0.33
            select: 50000.0
        use_5tt: false
        use_sift2: true
    qsirecon_suffix: MRtrix3
    software: MRTrix3
-   action: pyafq_tractometry
    input: track_ifod2
    name: pyafq_tractometry
    parameters:
        bundle_info: 'reco_bd(80)'
        b0_threshold: 50
        brain_mask_definition: ''
        clean_rounds: 5
        clip_edges: false
        csd_lambda_: 1
        csd_response: ''
        csd_sh_order: ''
        csd_tau: 0.1
        directions: prob
        dist_to_atlas: 4
        dist_to_waypoint: ''
        distance_threshold: 3
        export: all
        filter_b: true
        filter_by_endpoints: true
        greater_than: 20
        gtol: 0.01
        import_tract: ''
        length_threshold: 4
        mapping_definition: ''
        max_angle: 30.0
        max_bval: ''
        max_length: 250
        min_bval: ''
        min_length: 10
        min_sl: 20
        model_clust_thr: 1.25
        n_points: 100
        n_points_bundles: 40
        n_points_indiv: 40
        n_seeds: 1
        nb_points: false
        nb_streamlines: false
        odf_model: CSD
        parallel_segmentation: '{''n_jobs'': -1, ''engine'': ''joblib'', ''backend'':
            ''loky''}'
        presegment_bundle_dict: null
        presegment_kwargs: '{}'
        prob_threshold: 0
        profile_weights: gauss
        progressive: true
        pruning_thr: 12
        random_seeds: false
        reduction_thr: 25
        refine: false
        reg_algo: ''
        reg_subject_spec: power_map
        reg_template_spec: mni_T1
        return_idx: false
        rm_small_clusters: 50
        rng: ''
        rng_seed: ''
        robust_tensor_fitting: false
        roi_dist_tie_break: false
        save_intermediates: ''
        sbv_lims_bundles: '[None, None]'
        sbv_lims_indiv: '[None, None]'
        scalars: '[''dti_fa'', ''dti_md'']'
        seed_mask: ''
        seed_threshold: 0
        seg_algo: AFQ
        sphere: ''
        stat: mean
        step_size: 0.5
        stop_mask: ''
        stop_threshold: 0
        tracker: local
        use_external_tracking: true
        virtual_frame_buffer: false
        viz_backend_spec: plotly_no_gif
        volume_opacity_bundles: 0.3
        volume_opacity_indiv: 0.3
    qsirecon_suffix: PYAFQ
    software: pyAFQ
space: T1w

Version:

PUT VERSION HERE

Environment (Docker, Singularity / Apptainer, custom installation):

PUT ENVIRONMENT HERE

Data formatted according to a validatable standard? Please provide the output of the validator:

PASTE VALIDATOR OUTPUT HERE

Relevant log outputs (up to 20 lines):

PASTE LOG OUTPUT HERE

Screenshots / relevant information: