I’m running cpac the first time and would like to do the seed_based_correlation_analysis. the sca run is on but the output doesn’t give me any correlations images.
Could you please check if CPAC Pipeline Configuration YAML file correct?
---
# CPAC Pipeline Configuration YAML file
# Version 1.8.4.dev
#
# http://fcp-indi.github.io for more info.
#
# OUTPUTS AND DERIVATIVES
# -----------------------
post_processing:
spatial_smoothing:
# Smooth the derivative outputs.
# Set as ['nonsmoothed'] to disable smoothing. Set as ['smoothed', 'nonsmoothed'] to get both.
#
# Options:
# ['smoothed', 'nonsmoothed']
output: ['smoothed']
# Tool to use for smoothing.
# 'FSL' for FSL MultiImageMaths for FWHM provided
# 'AFNI' for AFNI 3dBlurToFWHM for FWHM provided
smoothing_method: ['FSL']
# Full Width at Half Maximum of the Gaussian kernel used during spatial smoothing.
# this is a fork point
# i.e. multiple kernels - fwhm: [4,6,8]
fwhm: [4]
z-scoring:
# z-score standardize the derivatives. This may be needed for group-level analysis.
# Set as ['raw'] to disable z-scoring. Set as ['z-scored', 'raw'] to get both.
#
# Options:
# ['z-scored', 'raw']
output: ['z-scored']
timeseries_extraction:
roi_paths_fully_specified: False
run: On
# Enter paths to region-of-interest (ROI) NIFTI files (.nii or .nii.gz) to be used for time-series extraction, and then select which types of analyses to run.
# Denote which analyses to run for each ROI path by listing the names below. For example, if you wish to run Avg and SpatialReg, you would enter: '/path/to/ROI.nii.gz': Avg, SpatialReg
# available analyses:
# /path/to/atlas.nii.gz: Avg, Voxel, SpatialReg
tse_roi_paths:
/cpac_templates/CC400.nii.gz: Avg
/cpac_templates/aal_mask_pad.nii.gz: Avg
/cpac_templates/CC200.nii.gz: Avg
/cpac_templates/tt_mask_pad.nii.gz: Avg
/cpac_templates/PNAS_Smith09_rsn10.nii.gz: SpatialReg
/cpac_templates/ho_mask_pad.nii.gz: Avg
/cpac_templates/rois_3mm.nii.gz: Avg
/ndmg_atlases/label/Human/AAL_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/CAPRSC_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/DKT_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/DesikanKlein_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/HarvardOxfordcort-maxprob-thr25_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/HarvardOxfordsub-maxprob-thr25_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Juelich_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/MICCAI_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Schaefer1000_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Schaefer200_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Schaefer300_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Schaefer400_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Talairach_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Brodmann_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Desikan_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Glasser_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Slab907_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Yeo-17-liberal_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Yeo-17_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Yeo-7-liberal_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
/ndmg_atlases/label/Human/Yeo-7_space-MNI152NLin6_res-1x1x1.nii.gz: Avg
# Functional time-series and ROI realignment method: ['ROI_to_func'] or ['func_to_ROI']
# 'ROI_to_func' will realign the atlas/ROI to functional space (fast)
# 'func_to_ROI' will realign the functional time series to the atlas/ROI space
#
# NOTE: in rare cases, realigning the ROI to the functional space may
# result in small misalignments for very small ROIs - please double
# check your data if you see issues
realignment: 'ROI_to_func'
connectivity_matrix:
# Create a connectivity matrix from timeseries data
# Options:
# ['AFNI', 'Nilearn', 'ndmg']
using:
- Nilearn
- ndmg
# Options:
# ['Pearson', 'Partial']
# Note: These options are not configurable for ndmg, which will ignore these options
measure:
- Pearson
- Partial
seed_based_correlation_analysis:
roi_paths_fully_specified: False
# SCA - Seed-Based Correlation Analysis
# For each extracted ROI Average time series, CPAC will generate a whole-brain correlation map.
# It should be noted that for a given seed/ROI, SCA maps for ROI Average time series will be the same.
run: On
# Enter paths to region-of-interest (ROI) NIFTI files (.nii or .nii.gz) to be used for seed-based correlation analysis, and then select which types of analyses to run.
# Denote which analyses to run for each ROI path by listing the names below. For example, if you wish to run Avg and MultReg, you would enter: '/path/to/ROI.nii.gz': Avg, MultReg
# available analyses:
# /path/to/atlas.nii.gz: Avg, DualReg, MultReg
sca_roi_paths:
/cpac_templates/PNAS_Smith09_rsn10.nii.gz: DualReg
/cpac_templates/CC400.nii.gz: Avg, MultReg
/cpac_templates/ez_mask_pad.nii.gz: Avg, MultReg
/cpac_templates/aal_mask_pad.nii.gz: Avg, MultReg
/cpac_templates/CC200.nii.gz: Avg, MultReg
/cpac_templates/tt_mask_pad.nii.gz: Avg, MultReg
/cpac_templates/ho_mask_pad.nii.gz: Avg, MultReg
/cpac_templates/rois_3mm.nii.gz: Avg, MultReg
# Normalize each time series before running Dual Regression SCA.
norm_timeseries_for_DR: True
amplitude_low_frequency_fluctuation:
# ALFF & f/ALFF
# Calculate Amplitude of Low Frequency Fluctuations (ALFF) and fractional ALFF (f/ALFF) for all voxels.
run: On
# Frequency cutoff (in Hz) for the high-pass filter used when calculating f/ALFF.
highpass_cutoff: [0.01]
# Frequency cutoff (in Hz) for the low-pass filter used when calculating f/ALFF
lowpass_cutoff: [0.1]
regional_homogeneity:
# ReHo
# Calculate Regional Homogeneity (ReHo) for all voxels.
run: On
# Number of neighboring voxels used when calculating ReHo
# 7 (Faces)
# 19 (Faces + Edges)
# 27 (Faces + Edges + Corners)
cluster_size: 27
voxel_mirrored_homotopic_connectivity:
# VMHC
# Calculate Voxel-mirrored Homotopic Connectivity (VMHC) for all voxels.
run: On
symmetric_registration:
# Included as part of the 'Image Resource Files' package available on the Install page of the User Guide.
# It is not necessary to change this path unless you intend to use a non-standard symmetric template.
T1w_brain_template_symmetric: $FSLDIR/data/standard/MNI152_T1_${resolution_for_anat}_brain_symmetric.nii.gz
# A reference symmetric brain template for resampling
T1w_brain_template_symmetric_for_resample: $FSLDIR/data/standard/MNI152_T1_1mm_brain_symmetric.nii.gz
# Included as part of the 'Image Resource Files' package available on the Install page of the User Guide.
# It is not necessary to change this path unless you intend to use a non-standard symmetric template.
T1w_template_symmetric: $FSLDIR/data/standard/MNI152_T1_${resolution_for_anat}_symmetric.nii.gz
# A reference symmetric skull template for resampling
T1w_template_symmetric_for_resample: $FSLDIR/data/standard/MNI152_T1_1mm_symmetric.nii.gz
# Included as part of the 'Image Resource Files' package available on the Install page of the User Guide.
# It is not necessary to change this path unless you intend to use a non-standard symmetric template.
dilated_symmetric_brain_mask: $FSLDIR/data/standard/MNI152_T1_${resolution_for_anat}_brain_mask_symmetric_dil.nii.gz
# A reference symmetric brain mask template for resampling
dilated_symmetric_brain_mask_for_resample: $FSLDIR/data/standard/MNI152_T1_1mm_brain_mask_symmetric_dil.nii.gz
network_centrality:
# Calculate Degree, Eigenvector Centrality, or Functional Connectivity Density.
run: On
# Maximum amount of RAM (in GB) to be used when calculating Degree Centrality.
# Calculating Eigenvector Centrality will require additional memory based on the size of the mask or number of ROI nodes.
memory_allocation: 1.0
# Full path to a NIFTI file describing the mask. Centrality will be calculated for all voxels within the mask.
template_specification_file: /cpac_templates/Mask_ABIDE_85Percent_GM.nii.gz
degree_centrality:
# Enable/Disable degree centrality by selecting the connectivity weights
# weight_options: ['Binarized', 'Weighted']
# disable this type of centrality with:
# weight_options: []
weight_options: ['Binarized', 'Weighted']
# Select the type of threshold used when creating the degree centrality adjacency matrix.
# options:
# 'Significance threshold', 'Sparsity threshold', 'Correlation threshold'
correlation_threshold_option: 'Sparsity threshold'
# Based on the Threshold Type selected above, enter a Threshold Value.
# P-value for Significance Threshold
# Sparsity value for Sparsity Threshold
# Pearson's r value for Correlation Threshold
correlation_threshold: 0.001
eigenvector_centrality:
# Enable/Disable eigenvector centrality by selecting the connectivity weights
# weight_options: ['Binarized', 'Weighted']
# disable this type of centrality with:
# weight_options: []
weight_options: ['Weighted']
# Select the type of threshold used when creating the eigenvector centrality adjacency matrix.
# options:
# 'Significance threshold', 'Sparsity threshold', 'Correlation threshold'
correlation_threshold_option: 'Sparsity threshold'
# Based on the Threshold Type selected above, enter a Threshold Value.
# P-value for Significance Threshold
# Sparsity value for Sparsity Threshold
# Pearson's r value for Correlation Threshold
correlation_threshold: 0.001
local_functional_connectivity_density:
# Enable/Disable lFCD by selecting the connectivity weights
# weight_options: ['Binarized', 'Weighted']
# disable this type of centrality with:
# weight_options: []
weight_options: ['Binarized', 'Weighted']
# Select the type of threshold used when creating the lFCD adjacency matrix.
# options:
# 'Significance threshold', 'Correlation threshold'
correlation_threshold_option: 'Correlation threshold'
# Based on the Threshold Type selected above, enter a Threshold Value.
# P-value for Significance Threshold
# Sparsity value for Sparsity Threshold
# Pearson's r value for Correlation Threshold
correlation_threshold: 0.6
# PACKAGE INTEGRATIONS
# --------------------
PyPEER:
# Training of eye-estimation models. Commonly used for movies data/naturalistic viewing.
run: Off
# PEER scan names to use for training
# Example: ['peer_run-1', 'peer_run-2']
eye_scan_names: []
# Naturalistic viewing data scan names to use for eye estimation
# Example: ['movieDM']
data_scan_names: []
# Template-space eye mask
eye_mask_path: $FSLDIR/data/standard/MNI152_T1_${func_resolution}_eye_mask.nii.gz
# PyPEER Stimulus File Path
# This is a file describing the stimulus locations from the calibration sequence.
stimulus_path: None
minimal_nuisance_correction:
# PyPEER Minimal nuisance regression
# Note: PyPEER employs minimal preprocessing - these choices do not reflect what runs in the main pipeline.
# PyPEER uses non-nuisance-regressed data from the main pipeline.
# Global signal regression (PyPEER only)
peer_gsr: True
# Motion scrubbing (PyPEER only)
peer_scrub: False
# Motion scrubbing threshold (PyPEER only)
scrub_thresh: 0.2