Here is the full trace back:
File "parcellation_script.py", line 101, in <module>
kmeans.fit(concat_data)
File "/home/tvanasse/nilearn/nilearn/decomposition/base.py", line 411, in fit
n_jobs=self.n_jobs)
File "/home/tvanasse/nilearn/nilearn/decomposition/base.py", line 175, in mask_and_reduce
) for img, confound in zip(imgs, confounds))
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/parallel.py", line 1003, in __call__
if self.dispatch_one_batch(iterator):
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/parallel.py", line 834, in dispatch_one_batch
self._dispatch(tasks)
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/parallel.py", line 753, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 201, in apply_async
result = ImmediateResult(func)
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 582, in __init__
self.results = batch()
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/parallel.py", line 256, in __call__
for func, args, kwargs in self.items]
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/parallel.py", line 256, in <listcomp>
for func, args, kwargs in self.items]
File "/home/tvanasse/nilearn/nilearn/decomposition/base.py", line 205, in _mask_and_reduce_single
this_data = masker.transform(img, confound)
File "/home/tvanasse/nilearn/nilearn/input_data/multi_nifti_masker.py", line 326, in transform
return self.transform_single_imgs(imgs)
File "/home/tvanasse/nilearn/nilearn/input_data/nifti_masker.py", line 405, in transform_single_imgs
dtype=self.dtype
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/memory.py", line 355, in __call__
return self.func(*args, **kwargs)
File "/home/tvanasse/nilearn/nilearn/input_data/nifti_masker.py", line 59, in filter_and_mask
dtype=dtype)
File "/home/tvanasse/nilearn/nilearn/input_data/base_masker.py", line 94, in filter_and_extract
imgs, parameters['smoothing_fwhm'])
File "/home/tvanasse/miniconda/envs/nsddata/lib/python3.7/site-packages/joblib/memory.py", line 355, in __call__
return self.func(*args, **kwargs)
File "/home/tvanasse/nilearn/nilearn/image/image.py", line 287, in smooth_img
ensure_finite=True, copy=True)
File "/home/tvanasse/nilearn/nilearn/image/image.py", line 225, in _smooth_array
arr[np.logical_not(np.isfinite(arr))] = 0
MemoryError: Unable to allocate array with shape (182, 218, 182, 7500) and data type bool
And using scikit-learn kmean’s algorithm directly seems like a fine idea… thanks for the suggestion.