Hi,
I’ve been running the following command for data from 45 runs. Two runs give an “index out of bounds” error after ICA fails to converge. The images used and the adaptive mask look reasonable to me. Output is below. I’d appreciate any thoughts on why these errors come up for these two runs and what can be done about it.
Thanks, Dara
tedana -d te1_mcf_ts_brain.nii te2_mcf_ts_brain.nii te3_mcf_ts_brain.nii -e 13.0 35.9 58.0 --out-dir=/u/scratch/d/darag/multiecho/11055_2/TED.mcf_ts_brain --verbose
/u/local/apps/python/3.6.1/lib/python3.6/site-packages/h5py/init.py:34: FutureWarning: Conversion of the second argument of issubdtype from float
to np.floating
is deprecated. In future, it will be treated as np.float64 == np.dtype(float).type
.
from ._conv import register_converters as _register_converters
/u/home/d/darag/.local/lib/python3.6/site-packages/sklearn/externals/joblib/init.py:15: DeprecationWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.
warnings.warn(msg, category=DeprecationWarning)
INFO:tedana.workflows.tedana:Using output directory: /u/scratch/d/darag/multiecho/11055_2/TED.mcf_ts_brain
INFO:tedana.workflows.tedana:Loading input data: [‘te1_mcf_ts_brain.nii’, ‘te2_mcf_ts_brain.nii’, ‘te3_mcf_ts_brain.nii’]
INFO:tedana.workflows.tedana:Computing EPI mask from first echo
WARNING:tedana.utils:279 voxels in user-defined mask do not have good signal. Removing voxels from mask.
INFO:tedana.workflows.tedana:Computing T2* map
INFO:tedana.combine:Optimally combining data with voxel-wise T2 estimates
INFO:tedana.decomposition.eigendecomp:Computing PCA of optimally combined multi-echo data
INFO:tedana.decomposition.eigendecomp:Making initial component selection guess from PCA results
INFO:tedana.combine:Optimally combining data with voxel-wise T2 estimates
INFO:tedana.model.fit:Fitting TE- and S0-dependent models to components
INFO:tedana.decomposition.eigendecomp:Saving PCA results to: /u/scratch/d/darag/multiecho/11055_2/TED.mcf_ts_brain/pcastate.pkl
INFO:tedana.decomposition.eigendecomp:Selected 283 components with MLE dimensionality detection
WARNING:tedana.decomposition.eigendecomp:ICA attempt 1 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 43
WARNING:tedana.decomposition.eigendecomp:ICA attempt 2 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 44
WARNING:tedana.decomposition.eigendecomp:ICA attempt 3 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 45
WARNING:tedana.decomposition.eigendecomp:ICA attempt 4 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 46
WARNING:tedana.decomposition.eigendecomp:ICA attempt 5 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 47
WARNING:tedana.decomposition.eigendecomp:ICA attempt 6 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 48
WARNING:tedana.decomposition.eigendecomp:ICA attempt 7 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 49
WARNING:tedana.decomposition.eigendecomp:ICA attempt 8 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 50
WARNING:tedana.decomposition.eigendecomp:ICA attempt 9 failed to converge after 500 iterations
WARNING:tedana.decomposition.eigendecomp:Random seed updated to 51
WARNING:tedana.decomposition.eigendecomp:ICA attempt 10 failed to converge after 500 iterations
INFO:tedana.workflows.tedana:Making second component selection guess from ICA results
INFO:tedana.combine:Optimally combining data with voxel-wise T2 estimates
INFO:tedana.model.fit:Fitting TE- and S0-dependent models to components
INFO:tedana.model.fit:Performing spatial clustering of components
Traceback (most recent call last):
File “/u/home/d/darag/.local/bin/tedana”, line 11, in
sys.exit(_main())
File “/u/home/d/darag/.local/lib/python3.6/site-packages/tedana/workflows/tedana.py”, line 453, in _main
tedana_workflow(**vars(options))
File “/u/home/d/darag/.local/lib/python3.6/site-packages/tedana/workflows/tedana.py”, line 379, in tedana_workflow
n_echos)
File “/u/home/d/darag/.local/lib/python3.6/site-packages/tedana/selection/select_comps.py”, line 250, in selcomps
rho_elbow = np.mean((getelbow(comptable.loc[ncls, ‘rho’], return_val=True),
File “/u/home/d/darag/.local/lib/python3.6/site-packages/tedana/selection/_utils.py”, line 71, in getelbow
p = coords - coords[:, 0].reshape(2, 1)
IndexError: index 0 is out of bounds for axis 1 with size 0