One of the crash file is:
Node: _parcellate_reho13
Working directory: /common/wanglab/jojo/datasets/testCocaine/scripts/working_dir/xcpd_wf/single_subject_001_wf/nifti_postprocess_1_wf/connectivity_wf/parcellate_reho/mapflow/_parcellate_reho13
Node inputs:
atlas = /common/wanglab/jojo/datasets/testCocaine/derivatives/xcp-d/xcp_d/space-MNI152NLin6Asym_atlas-Tian_dseg.nii.gz
atlas_labels = /common/wanglab/jojo/datasets/testCocaine/derivatives/xcp-d/xcp_d/atlas-Tian_dseg.tsv
filtered_file = /common/wanglab/jojo/datasets/testCocaine/scripts/working_dir/xcpd_wf/single_subject_001_wf/nifti_postprocess_1_wf/reho_wf/reho_3d/reho.nii.gz
mask = /common/wanglab/jojo/datasets/testCocaine/derivatives/fmriprep/sub-001/func/sub-001_task-rest_space-MNI152NLin6Asym_res-2_desc-brain_mask.nii.gz
min_coverage = 0.5
Traceback (most recent call last):
File “/usr/local/miniconda/lib/python3.8/site-packages/nipype/pipeline/plugins/multiproc.py”, line 67, in run_node
result[“result”] = node.run(updatehash=updatehash)
File “/usr/local/miniconda/lib/python3.8/site-packages/nipype/pipeline/engine/nodes.py”, line 527, in run
result = self._run_interface(execute=True)
File “/usr/local/miniconda/lib/python3.8/site-packages/nipype/pipeline/engine/nodes.py”, line 645, in _run_interface
return self._run_command(execute)
File “/usr/local/miniconda/lib/python3.8/site-packages/nipype/pipeline/engine/nodes.py”, line 771, in _run_command
raise NodeExecutionError(msg)
nipype.pipeline.engine.nodes.NodeExecutionError: Exception raised while executing Node _parcellate_reho13.
Traceback:
Traceback (most recent call last):
File “/usr/local/miniconda/lib/python3.8/site-packages/nipype/interfaces/base/core.py”, line 397, in run
runtime = self._run_interface(runtime)
File “/usr/local/miniconda/lib/python3.8/site-packages/xcp_d/interfaces/connectivity.py”, line 105, in _run_interface
n_voxels_in_masked_parcels = sum_masker_masked.fit_transform(atlas_img_bin)
File “/usr/local/miniconda/lib/python3.8/site-packages/sklearn/utils/_set_output.py”, line 157, in wrapped
data_to_wrap = f(self, X, args, kwargs)
File “/usr/local/miniconda/lib/python3.8/site-packages/nilearn/maskers/nifti_labels_masker.py”, line 455, in fit_transform
return self.fit().transform(imgs, confounds=confounds,
File “/usr/local/miniconda/lib/python3.8/site-packages/nilearn/maskers/nifti_labels_masker.py”, line 364, in fit
raise ValueError(
ValueError: Regions and mask do not have the same shape
** labels_img: /common/wanglab/jojo/datasets/testCocaine/derivatives/xcp-d/xcp_d/space-MNI152NLin6Asym_atlas-Tian_dseg.nii.gz
** mask_img: /common/wanglab/jojo/datasets/testCocaine/derivatives/fmriprep/sub-001/func/sub-001_task-rest_space-MNI152NLin6Asym_res-2_desc-brain_mask.nii.gz*
This error may be due to the resolution match. I have two kinds of fmriprep output, one is sub-001_task-rest_space-MNI152NLin6Asym_desc-brain_mask.nii.gz, the other is sub-001_task-rest_space-MNI152NLin6Asym_res-2_desc-brain_mask.nii.gz.
I guess xcp-d used the first one to generate ReHo and FC, but when it used the second one, errors happened. xcp-d has 14 atlases, so 14*2 = 28 error files.